

Renal Toxicity Caused by Cisplatinum in Glutathione-Depleted Metallothionein-Null Mice

Masahiko Satoh,*† Akinori Shimada,‡ Baoxu Zhang* and Chiharu Tohyama*

*Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba 305-0053, Japan; and ‡Department of Veterinary Pathology, Tottori University, Tottori 680-0945, Japan

ABSTRACT. To elucidate the protective role of metallothionein (MT) and glutathione (GSH) in renal toxicity caused by cisplatinum (cis-DDP), we examined the sensitivity of GSH-depleted MT-null mice to the renal toxicity of cis-DDP. Blood urea nitrogen and creatinine values in the serum, and histopathological change in the kidney were utilized as indicators of nephrotoxicity caused by cis-DDP. Although cis-DDP exerted renal toxicity in MT-null mice and wild-type mice, the toxicity was more conspicuous in the MT-null mice than in the wild-type mice. Moreover, renal toxicity caused by cis-DDP was enhanced significantly by a decrease in the renal GSH level by buthionine sulfoximine (BSO) pretreatment in both kinds of mice. The cis-DDP-caused nephrotoxicity that was enhanced by BSO-mediated GSH depletion was much more severe in the MT-null mice than in the wild-type mice. However, preadministration of zinc sulfate cancelled the BSO-enhanced, cis-DDP-dependent renal toxicity in the wild-type mice, but not in the MT-null mice. In the present study, we found that MT and GSH play an important, cooperative role in detoxification of severe kidney damage caused by cis-DDP. Moreover, the renal MT preinduced by zinc could protect mice from cis-DDP nephrotoxicity enhanced by GSH depletion. BIOCHEM PHARMACOL **60**;11:1729–1734, 2000. © 2000 Elsevier Science Inc.

KEY WORDS. metallothionein; glutathione; cisplatinum; renal toxicity; knockout mice; buthionine sulfoximine

cis-DDP§ is one of the most extensively evaluated antineoplastic agents. It has potent antitumor activity with a broad anticancer spectrum against certain human neoplasms [1, 2]. However, cis-DDP produces severe side-effects in the kidney, bone marrow, and gastrointestinal system [3]. In particular, the clinical use of cis-DDP is hampered by its severe nephrotoxicity. Although the mechanism of renal toxicity caused by cis-DDP is still not clear, there is evidence that cis-DDP produces inter- and intra-strand cross-links in nucleic acid [4, 5], inhibits a number of sulfhydryl-containing enzymes [6, 7], and induces lipid peroxidation by the generation of free radicals [8, 9].

GSH, a cysteine-containing tripeptide, is considered as a protective cellular factor against *cis*-DDP toxicity. Administration of either GSH or GSH ester to laboratory animals has protected them from adverse effects caused by *cis*-DDP [10–13]. It has been established that the renal toxicity of *cis*-DDP is enhanced by depletion of tissue GSH by using BSO, a specific inhibitor of γ -glutamylcysteine synthetase [14, 15].

On the other hand, preadministration of MT-inducing metal such as bismuth can suppress the renal toxicity of

cis-DDP [16–20]. MT is a cysteine-rich low-molecular-weight protein with a high affinity for metals such as cadmium, mercury, and platinum, and is induced by various metals and many other factors such as glucocorticoids and cytokines [21]. Recent studies have shown that the sensitivity to the renal toxicity of cis-DDP is increased in MT-null transgenic mice having a null mutation of MT-I and -II genes [22, 23].

Nakagawa and coworkers [24] found that pretreatment with a zinc compound attenuates BSO-enhanced, *cis*-DDP-dependent nephrotoxicity, and they speculated that this protective effect is due to preinduced MT. However, this hypothesis has not been validated because zinc shows not only MT induction but also other effects [25–27]. Moreover, the relationship between endogenous MT and GSH in the detoxification of *cis*-DDP has not been studied.

In the present study, we examined the sensitivity of GSH-depleted MT-null mice to renal toxicity of *cis*-DDP in order to elucidate the role of MT and GSH in *cis*-DDP-caused nephrotoxicity. We also explored the effect of pretreatment with zinc on *cis*-DDP nephrotoxicity caused by GSH depletion in the MT-null mice and the wild-type mice.

MATERIALS AND METHODS Animals and Chemicals

MT-null (MT^{-/-}) mice whose MT-I and -II genes had null mutation and wild-type (MT^{+/+}) mice, which were pro-

[†] Corresponding author: Dr. Masahiko Satoh, Environmental Health Sciences Division, National Institute for Environmental Studies, 16–2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan. Tel. (81) 298-50-2448; FAX (81) 298-50-2588; E-mail: masahiko@nies.go.jp

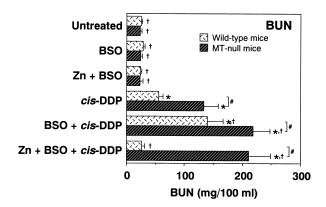
[§] Abbreviations: cis-DDP, cisplatinum; GSH, glutathione; MT, metallothionein; BSO, buthionine sulfoximine; and BUN, blood urea nitrogen. Received 17 March 2000; accepted 23 May 2000.

1730 M. Satoh et al.

TABLE 1. MT and GSH concentrations in the kidneys of MT-null mice and wild-type mice treated with BSO and zinc sulfate

	MT (μg/g tissue)		GSH (µmol/g tissue)	
Treatments	Wild-type	MT-null	Wild-type	MT-null
Untreated BSO Zn + BSO	2.94 ± 0.79 7.43 ± 1.47* 89.1 ± 14.4†	<0.2 <0.2 <0.2	4.00 ± 0.33 0.82 ± 0.30 0.81 ± 0.21	0.84 ± 0.24

MT-null mice and wild-type mice were given an injection (s.c.) of zinc sulfate (200 μ mol/kg) once a day for 2 days. MT and GSH concentrations in the kidneys of these mice were determined at 24 hr after the last injection of zinc sulfate. BSO (2.5 mmol/kg) was administered s.c. to these mice at 4 hr prior to killing. Values are means \pm SD for four mice.


vided by Dr. A. Choo (Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Australia) [28], were of a mixed genetic background of 129 Ola and C57BL/6 strains. F1 hybrid mice were mated with C57BL/6 mice, and their offspring were back-crossed to C57BL/6 for three generations. MT-null (MT^{-/-}) mice and wild-type (MT^{+/+}) mice were obtained by mating of those heterozygous (MT^{+/-}) mice. We have found previously that *cis*-DDP nephrotoxicity is not significantly different between C57BL/6I mice and 129/Sv mice [22].

MT-null mice and wild-type mice were routinely bled in the vivarium of the National Institute for Environmental Studies (NIES). Microbiological and viral examinations were performed with regular quarantine procedures for more than a 1-year period, and we did not find either pathogenic infections or significant phenotypical abnormalities. Both strains of mice were housed in cages in ventilated animal rooms with a controlled temperature of $23 \pm 1^{\circ}$, a relative humidity of $55 \pm 10\%$, and a 12-hr light/dark cycle. They were maintained on standard laboratory chow and tap water *ad lib.*, and they received humane care throughout the experiment according to the guidelines of the NIES.

cis-DDP was supplied by the Nippon Kayaku Co., and the metal compounds and other chemicals were purchased from Wako Pure Chemical Industries.

Treatments

Eight-week-old female MT-null mice and wild-type mice (four mice for each treatment group) were given s.c. injections of zinc sulfate (200 μmol/kg) once a day for 2 days. These mice were given a single i.p. dose of *cis*-DDP (30 μmol/kg) at 24 hr after the last injection of zinc sulfate. L-BSO (2.5 mmol/kg) was administered s.c. to these mice 4

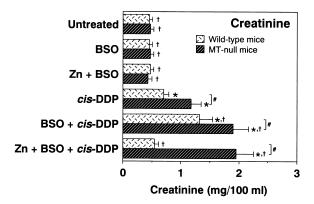
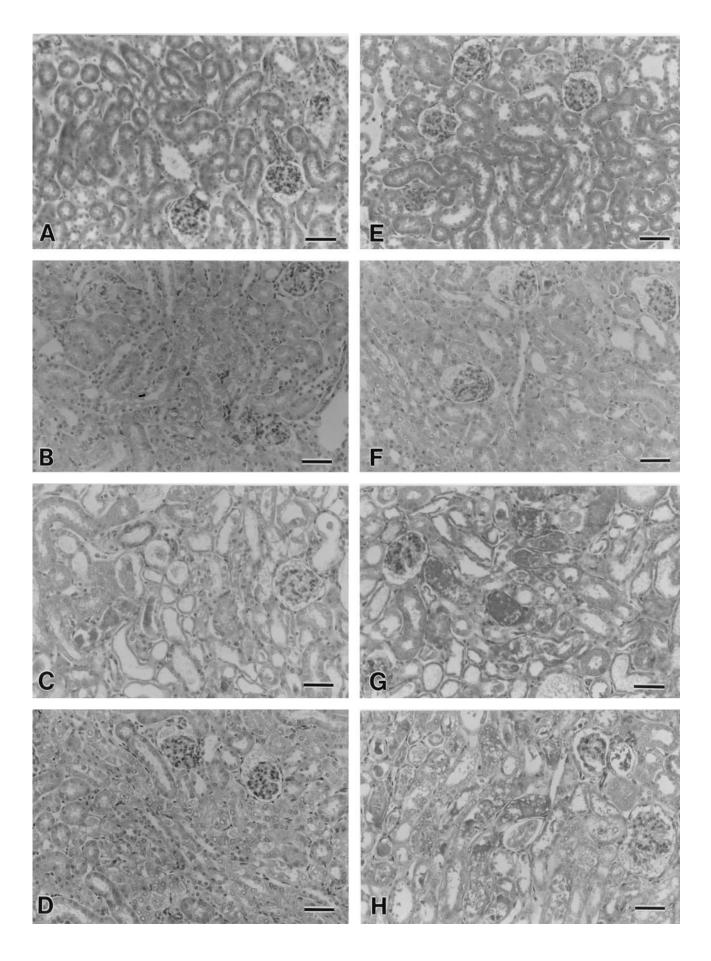


FIG. 1. Effect of pretreatment with BSO and zinc sulfate on renal toxicity caused by cis-DDP in MT-null mice and wild-type mice. BUN and creatinine were utilized as biomarkers for renal toxicity. Values are means \pm SD for four mice. Key: (*) significantly different from the corresponding untreated group (P < 0.05); (†) significantly different from the corresponding cis-DDP-treated group (P < 0.05); and (#) significantly different from wild-type mice (P < 0.05).

hr prior to a *cis*-DDP injection. To examine the renal toxicity of *cis*-DDP, blood and kidney were removed from each mouse under diethyl ether anesthesia 2 days after the injection of *cis*-DDP.

Histochemical Staining


For histochemical evaluation of nephrotoxicity, kidney tissues were fixed in 10% buffered formalin (pH 7.4) and embedded in paraffin. Deparaffinized tissue sections of 5 μ m in thickness were stained in hematoxylin-eosin.

Analysis

MT and GSH concentrations in the kidney were measured by radioimmunoassay [29] and Bioxytech GSH-400 Assay reagent (Oxis International, Inc.), respectively. BUN and

FIG. 2. Effect of pretreatment with BSO and zinc sulfate on histopathological changes in the renal cortex of cis-DDP-treated MT-null mice and wild-type mice. (A–D) wild-type mice; (E–H) MT-null mice. (A) untreated; (B) cis-DDP treated; (C) BSO and cis-DDP treated; (D) Zn, BSO, and cis-DDP treated; (E) untreated; (F) cis-DDP treated; (G) BSO and cis-DDP treated; and (H) Zn, BSO, and cis-DDP treated. Bar = 50 μm.

^{*,†}Significantly different from the corresponding untreated group: *P < 0.01, and †P < 0.001.

1732 M. Satoh et al.

creatinine values in the serum were determined using the automatic dry-chemistry analyzer system (Spotchem SP-4410; Kyoto Daiichikagaku). The data were analyzed statistically by Student's *t*-test.

RESULTS

MT and GSH levels were determined in the kidneys of MT-null mice and wild-type mice treated with BSO and zinc sulfate (Table 1). The renal MT level in the wild-type mice was increased to approximately 2.5 and 30 times of the control level by BSO alone and by a combination of BSO and zinc sulfate, respectively. There were no detectable amounts of renal MT in untreated MT-null mice, and they could not be induced by either BSO treatment or a combination of BSO and zinc sulfate. On the other hand, the basal GSH concentration in the kidney was not significantly different between MT-null mice and wild-type mice. At 4 hr after the BSO treatment, the renal GSH levels in both the MT-null mice and the wild-type mice were decreased to approximately 20% of the control level. The decreased GSH levels in these mice were not affected by injection of the zinc sulfate.

As shown in Fig. 1, BUN and creatinine values in the MT-null mice and wild-type mice were increased significantly by *cis*-DDP injection, and the MT-null mice showed a high sensitivity to the renal toxicity of *cis*-DDP compared with the wild-type mice. The elevated levels of these indicators in both kinds of *cis*-DDP-injected mice were enhanced significantly by BSO pretreatment, but the enhanced renal toxicity was strongly apparent in the MT-null mice. In the wild-type mice treated with both BSO and *cis*-DDP, the high levels of these indicators were reduced markedly by preadministration of zinc sulfate, but this result did not occur in the MT-null mice.

Next, we examined histopathological changes in the renal cortex of MT-null mice and wild-type mice treated with cis-DDP (Fig. 2). Both MT-null mice and wild-type mice treated with cis-DDP showed a slight tubular damage such as a lesser degree of degenerative tubules (Fig. 2, B and F). BSO pretreatment and cis-DDP administration to the MT-null mice and wild-type mice resulted in marked morphological changes such as degeneration and necrosis in tubular cells and a urinary cast in tubular lumen, but the degree of tubular damage was found to be more extensive in the MT-null mice (Fig. 2, C and G). The administration of zinc sulfate remarkably prevented the BSO-enhanced tubular damage in the wild-type mice treated with *cis*-DDP (Fig. 2D), whereas MT-null mice pretreated with zinc sulfate before the cis-DDP and BSO treatment showed tubular damage as severe as that found in cis-DDP- and BSOtreated MT-null mice (Fig. 2, G and H).

DISCUSSION

The adverse effect of *cis-DDP*, a widely used antineoplastic drug, has been found to be associated with depletion of

cellular thiol such as MT and GSH. The sensitivity of MT-null mice to cis-DDP nephrotoxicity has been found recently to be enhanced when compared with that of wild-type mice [22, 23]. In addition, fibroblasts derived from MT-null mouse embryos have been more sensitive to cis-DDP than MT-positive normal fibroblasts [30]. cis-DDP toxicity has been enhanced by BSO-mediated GSH depletion in vivo and in vitro [14, 15, 31, 32]. The present results are consistent with these earlier observations and show that kidney damage caused by cis-DDP was also enhanced by the depletion of MT and/or GSH. Moreover, we found that the renal toxicity caused by cis-DDP in the GSH-depleted MT-null mice was accelerated compared with that of the MT-null mice and the GSH-depleted wild-type mice. These results suggest that cellular MT and GSH act cooperatively as a detoxifying factor against severe kidney damage caused by cis-DDP.

Recently, a few reports have demonstrated a protective effect of zinc against the renal toxicity caused by cadmiummetallothionein (Cd-MT), the hepatotoxicity caused by carbon tetrachloride, and the insulin-dependent diabetes mellitus (IDDM) caused by streptozotocin in not only wild-type mice but also MT-null mice [33–35]. These results indicate that zinc-induced protection against Cd-MT nephrotoxicity, carbon tetrachloride hepatotoxicity, and streptozotocin IDDM is not due to MT. On the other hand, zinc pretreatment suppressed CdCl₂ hepatotoxicity and cis-DDP nephrotoxicity in the wild-type mice but not in the MT-null mice [22, 33]. These workers speculated that induction of MT by zinc pretreatment is capable of preventing adverse effects of these compounds. Thus, MTnull mice are an excellent model in which to evaluate whether the protection by metals such as zinc and bismuth against the toxicity of chemicals and metals is due to the preinduction of MT synthesis. Nakagawa and coworkers [24] showed that cis-DDP nephrotoxicity enhanced by BSO-mediated GSH depletion is prevented by zinc pretreatment. The present study clearly shows that induction of MT by zinc pretreatment is responsible for the cis-DDPcaused nephrotoxicity enhanced by GSH depletion, because severe kidney damage was prevented by zinc pretreatment in the GSH-depleted wild-type mice, but not in the GSH-depleted MT-null mice. This result suggests the hypothesis that MT can be an alternative detoxifying factor against renal toxicity caused by cis-DDP in cases where the kidney is deficient in GSH.

MT and GSH can act as free radical scavengers and prevent progression of lipid peroxidation [36, 37]. *cis*-DDP induces lipid peroxidation *in vitro* and *in vivo*, and this is reduced by antioxidants [8, 9]. Since platinum can be bound to the thiols in cysteine, GSH, and MT molecules, MT and GSH may prevent the *cis*-DDP-caused renal toxicity by trapping platinum and scavenging free radicals produced from *cis*-DDP.

Clinical cancer chemotherapy including *cis*-DDP often shows a large variation in the appearance and degree of nephrotoxicity in patients. Human MT and GSH levels differ under various conditions and life-styles. GSH levels in tissues have a circadian rhythm [38] and are decreased by treatment with several anticancer drugs such as *cis-DDP*, adriamycin, and alkylating agents [18, 39, 40]. MT synthesis is easily induced by various metals, glucocorticoids, and many other factors including *cis-DDP* [21]. Thus, the variation of sensitivity to renal toxicity caused by *cis-DDP* may be due to alterations of endogenous renal MT and/or GSH levels.

In conclusion, the renal toxicity of *cis*-DDP was enhanced by MT or GSH depletion, but greatly accelerated by both MT and GSH depletion, suggesting that MT and GSH cooperatively play an important role in detoxification of severe kidney damage caused by *cis*-DDP. Alteration of the renal MT concentration probably negatively affects the development of *cis*-DDP nephrotoxicity caused by depletion of renal GSH, because the increased *cis*-DDP nephrotoxicity due to GSH depletion can be prevented by preinduction of MT and accelerated by MT-null mutation.

The authors thank Mrs. T. Oda and H. Takimoto at the Animal Care Co. for their excellent assistance in the maintenance of transgenic mice at NIES. This research was partially supported by the Ministry of Education, Science, Sports, and Culture of Japan for Encouragement of Young Scientists (No. 09770288).

References

- Rosenberg RC, Van Camp L, Trosko JE and Mansour VH, Platinum compounds: A new class of potent antitumor agents. Nature 222: 385–386, 1969.
- Merrin CE, Treatment of genitourinary tumors with cisdichlorodiammineplatinum(II): Experience in 250 patients. Cancer Treat Rep 63: 1579–1584, 1979.
- Madias NE and Harrington JT, Platinum nephrotoxicity. Am J Med 65: 307–314, 1978.
- Zwelling LA and Kohn KW, Mechanism of action of cisdichlorodiammineplatinum(II). Cancer Treat Rep 63: 1439– 1444, 1979.
- Knox RJ, Friedlos F, Lydall DA and Roberts JJ, Mechanism of cytotoxicity of anticancer platinum drugs: Evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 46: 1972–1979, 1986
- Levi J, Jacobs C, Kalman SM, McTigue M and Weiner MW, Mechanism of cis-platinum nephrotoxicity: I. Effects of sulfhydryl groups in rat kidneys. J Pharmacol Exp Ther 213: 545–550, 1980.
- 7. Dedon PC and Borch RF, Characterization of the reactions of platinum antitumor agents with biologic and nonbiologic sulfur-containing nucleophiles. *Biochem Pharmacol* **36:** 1955–1964, 1987.
- Gemba M, Fukuishi N and Nakano S, Effect of N,N'diphenyl-p-phenylenediamine pretreatment on urinary enzyme excretion in cisplatin nephrotoxicity in rats. *Jpn J Phar*macol 46: 90–92, 1988.
- Hanneman J and Baumann K, Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: Different effects of antioxidants and radical scavengers. *Toxicology* 51: 119–132, 1988.
- 10. Zunino F, Tofanetti O, Besati A, Cavalletti E and Savi G, Protective effect of reduced glutathione against cisplatin-

- induced nephrotoxicity and lethal toxicity. *Tumori* **69:** 105–111, 1983.
- Oriana S, Bohm S, Spatti G, Zunino F and Di Re F, A preliminary clinical experience with reduced glutathione as protector against cisplatin-toxicity. *Tumori* 73: 337–340, 1987
- Zunino F, Pratesi G, Micheloni A, Cavalletti E, Sala F and Tofanetti O, Protective effect of reduced glutathione against cisplatin-induced renal and systemic toxicity and its influence on the therapeutic activity of the antitumor drug. Chem Biol Interact 70: 89–101, 1989.
- 13. Anderson ME, Naganuma A and Meister A, Protection against cisplatin toxicity by administration of glutathione ester. FASEB J 4: 3251–3255, 1990.
- Mayer RD, Lee K and Cockett ATK, Inhibition of cisplatininduced nephrotoxicity in rats by buthionine sulfoximine, a glutathione synthesis inhibitor. Cancer Chemother Pharmacol 20: 207–210, 1987.
- Ishikawa M, Takayanagi Y and Sasaki K, Enhancement of cisplatin toxicity by buthionine sulfoximine, a glutathionedepleting agent, in mice. Res Commun Chem Pathol Pharmacol 67: 131–141, 1990.
- Naganuma A, Satoh M and Imura N, Prevention of lethal and renal toxicity of cis-diamminedichloroplatinum(II) by induction of metallothionein synthesis without compromising its antitumor activity in mice. Cancer Res 47: 983–987, 1987.
- 17. Satoh M, Naganuma A and Imura N, Metallothionein induction prevents toxic side effects of cisplatin and adriamycin used in combination. Cancer Chemother Pharmacol 21: 176–178, 1988.
- 18. Boogaard PJ, Slikkerveer A, Nagelkerke JF and Mulder GJ, The role of metallothionein in the reduction of cisplatininduced nephrotoxicity by Bi³⁺-pretreatment in the rat in vivo and in vitro. Biochem Pharmacol 41: 369–375, 1991.
- 19. Kondo Y, Satoh M, Imura N and Akimoto M, Effect of bismuth nitrate given in combination with cis-diamminedichloroplatinum(II) on the antitumor activity and renal toxicity of the latter in nude mice inoculated with human bladder tumor. Cancer Chemother Pharmacol 29: 19–23, 1991.
- Kondo Y, Satoh M, Imura N and Akimoto M, Tissue-specific induction of metallothionein by bismuth as a promising protocol for chemotherapy with repeated administration of cis-diamminedichloroplatinum (II) against bladder tumor. Anticancer Res 12: 2303–2308, 1992.
- Kagi JHR and Schaffer A, Biochemistry of metallothionein. Biochemistry 27: 8509–8515, 1988.
- Satoh M, Aoki Y and Tohyama C, Protective role of metallothionein in renal toxicity of cisplatinum. Cancer Chemother Pharmacol 40: 358–362, 1997.
- 23. Liu J, Liu Y, Habeebu SSM and Klaassen CD, Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity. *Toxicol Appl Pharmacol* **149**: 24–31, 1998.
- 24. Nakagawa I, Satoh M, Naganuma A and Imura N, Role of metallothionein in protection against renal oxidative stress induced by *cis*-diamminedichloroplatinum (II) in glutathione-depleted mice. *Tohoku J Exp Med* 179: 11–21, 1996.
- Girotti AW, Thomas JP and Jordan JE, Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med 1: 395–401, 1985.
- 26. Bray TM and Bettger WJ, The physiological role of zinc as an antioxidant. Free Radic Biol Med 8: 281–291, 1990.
- Iszard MB, Liu J and Klaassen CD, Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology 104: 25–33, 1995.
- Michalska AE and Choo KHA, Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci USA 90: 8088–8092, 1993.

- 29. Tohyama C and Shaikh ZA, Metallothionein in plasma and urine of cadmium-exposed rats determined by a single-antibody radioimmunoassay. Fundam Appl Toxicol 1: 1–7, 1981.
- Kondo Y, Woo ES, Michalska AE, Choo KHA and Lazo JS, Metallothionein null cells have increased sensitivity to anticancer drugs. Cancer Res 55: 2021–2023, 1995.
- 31. Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC, Tsuruo T, Grotzinger KR, McKoy WM, Young RC and Ozols RF, Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. *Biochem Pharmacol* 34: 2583–2586, 1985
- 32. Andrews PA, Murphy MP and Howell SB, Differential sensitization of human carcinoma and mouse L1210 cells to cisplatin and melphalan by glutathione depletion. *Mol Pharmacol* 30: 643–650, 1986.
- Liu J, Liu Y, Michalska AE, Choo KHA and Klaassen CD, Metallothionein plays less of a protective role in cadmiummetallothionein-induced nephrotoxicity than in cadmium chloride-induced hepatotoxicity. J Pharmacol Exp Ther 276: 1216–1223, 1996.

- Itoh N, Kimura T, Nakanishi H, Muto N, Kobayashi M, Kitagawa I and Tanaka K, Metallothionein-independent hepatoprotection by zinc and sakuraso-saponin. *Toxicol Lett* 93: 135–140, 1997.
- Apostolova MD, Choo KHA, Michalska AE and Tohyama C, Analysis of the possible protective role of metallothionein in streptozotocin-induced diabetes using metallothionein-null mice. J Trace Elem Med Biol 11: 1–7, 1997.
- 36. Sato M and Bremner I, Oxygen free radicals and metallothionein. Free Radic Biol Med 14: 325–337, 1993.
- Anderson ME, Glutathione: An overview of biosynthesis and modulation. Chem Biol Interact 111–112: 1–14, 1998.
- 38. Farooqui MYH and Ahmed AE, Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. *Life Sci* **34:** 2413–2418, 1984.
- Babson JR, Abell NS and Reed DJ, Protective role of the glutathione redox cycle against adriamycin-mediated toxicity in isolated hepatocytes. *Biochem Pharmacol* 30: 2299–2304, 1981
- Gurtoo HL, Hipkens JH and Sharma SD, Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res. 41: 3584–3591, 1981.